Linkage disequilibrium and recombination rate estimates in the self-incompatibility region of Arabidopsis lyrata.
نویسندگان
چکیده
Genetic diversity is unusually high at loci in the S-locus region of the self-incompatible species of the flowering plant, Arabidopsis lyrata, not just in the S loci themselves, but also at two nearby loci. In a previous study of a single natural population from Iceland, we attributed this elevated polymorphism to linkage disequilibrium (LD) between variants at loci close to the S locus and the S alleles, which are maintained in the population by balancing selection. With the four S-flanking loci whose diversity we previously studied, we could not determine the extent of the region linked to the S loci in which neutral sites are affected. We also could not exclude the possibility of a population bottleneck, or of admixture, as causes of the LD. We have now studied four more distant loci flanking the S-locus region, and more populations, and we analyze the results using a theoretical model of the effect of balancing selection on diversity at linked neutral sites within and between different functional S-allelic classes. In the model, diversity is a function of the number of selectively maintained alleles and the recombination distances from the selectively maintained sites. We use the model to estimate the number of different functional S alleles, their turnover rate, and recombination rates between the S-locus region and other loci. Our estimates suggest that there is a small region of very low recombination surrounding the S-locus region.
منابع مشابه
Linkage disequilibrium between incompatibility locus region genes in the plant Arabidopsis lyrata.
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is...
متن کاملBalancing Selection and Low Recombination Affect Diversity near the Self-Incompatibility Loci of the Plant Arabidopsis lyrata
The self-incompatibility (S-) locus region of plants in the Brassica family is a small genome region. In Arabidopsis lyrata, the S-genes, SRK and SCR, encode the functional female and pollen recognition proteins, which must be coadapted to maintain correct associations between the two component genes, and thus self-incompatibility (SI). Recombinants would be self-compatible and thus probably di...
متن کاملRecent and Ancient Signature of Balancing Selection around the S-Locus in Arabidopsis halleri and A. lyrata
Balancing selection can maintain different alleles over long evolutionary times. Beyond this direct effect on the molecular targets of selection, balancing selection is also expected to increase neutral polymorphism in linked genome regions, in inverse proportion to their genetic map distances from the selected sites. The genes controlling plant self-incompatibility are subject to one of the st...
متن کاملTrans-specificity at loci near the self-incompatibility loci in Arabidopsis.
We compared allele sequences of two loci near the Arabidopsis lyrata self-incompatibility (S) loci with sequences of A. thaliana orthologs and found high numbers of shared polymorphisms, even excluding singletons and sites likely to be highly mutable. This suggests maintenance of entire S-haplotypes for long evolutionary times and extreme recombination suppression in the region.
متن کاملSustained heterozygosity across a self-incompatibility locus in an inbred ascidian.
Because self-incompatibility loci are maintained heterozygous and recombination within self-incompatibility loci would be disadvantageous, self-incompatibility loci are thought to contribute to structural and functional differentiation of chromosomes. Although the hermaphrodite chordate, Ciona intestinalis, has two self-incompatibility genes, this incompatibility system is incomplete and self-f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics
دوره 176 4 شماره
صفحات -
تاریخ انتشار 2007